Composition-dependent crystallization of alternative gate dielectrics.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

Composition-dependent crystallization of alternative gate dielectrics. / Van Dover, R B; Green, M L; Manchanda, L; Schneemeyer, L F; Siegrist, Theo.

I: Applied Physics Letters, Vol. 83, Nr. 7, 2003, s. 1459-1461.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Harvard

Van Dover, RB, Green, ML, Manchanda, L, Schneemeyer, LF & Siegrist, T 2003, 'Composition-dependent crystallization of alternative gate dielectrics.', Applied Physics Letters, vol. 83, nr. 7, s. 1459-1461. https://doi.org/10.1063/1.1603341

APA

Van Dover, R. B., Green, M. L., Manchanda, L., Schneemeyer, L. F., & Siegrist, T. (2003). Composition-dependent crystallization of alternative gate dielectrics. Applied Physics Letters, 83(7), 1459-1461. https://doi.org/10.1063/1.1603341

CBE

Van Dover RB, Green ML, Manchanda L, Schneemeyer LF, Siegrist T. 2003. Composition-dependent crystallization of alternative gate dielectrics. Applied Physics Letters. 83(7):1459-1461. https://doi.org/10.1063/1.1603341

MLA

Vancouver

Van Dover RB, Green ML, Manchanda L, Schneemeyer LF, Siegrist T. Composition-dependent crystallization of alternative gate dielectrics. Applied Physics Letters. 2003;83(7):1459-1461. https://doi.org/10.1063/1.1603341

Author

Van Dover, R B ; Green, M L ; Manchanda, L ; Schneemeyer, L F ; Siegrist, Theo. / Composition-dependent crystallization of alternative gate dielectrics. I: Applied Physics Letters. 2003 ; Vol. 83, Nr. 7. s. 1459-1461.

RIS

TY - JOUR

T1 - Composition-dependent crystallization of alternative gate dielectrics.

AU - Van Dover, R B

AU - Green, M L

AU - Manchanda, L

AU - Schneemeyer, L F

AU - Siegrist, Theo

N1 - The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Polymer and Materials Chemistry (LTH) (011001041)

PY - 2003

Y1 - 2003

N2 - We have investigated the crystallization of amorphous oxides that are considered likely candidates to replace amorphous SiO2 as the gate dielectric in advanced field-effect transistors. To avoid crystallization, the mole fraction of main-group oxide in the Zr–Si–O, Zr–Al–O, and Hf–Si–O systems must be greater than 83%, 65%, and 78%, respectively, leading to a maximum useful dielectric constant of only 6.9, 12.7, and 6.6, respectively. We conclude that the silicate systems are not likely to be useful as replacements for SiO2, while aluminates are more promising. ©2003 American Institute of Physics.

AB - We have investigated the crystallization of amorphous oxides that are considered likely candidates to replace amorphous SiO2 as the gate dielectric in advanced field-effect transistors. To avoid crystallization, the mole fraction of main-group oxide in the Zr–Si–O, Zr–Al–O, and Hf–Si–O systems must be greater than 83%, 65%, and 78%, respectively, leading to a maximum useful dielectric constant of only 6.9, 12.7, and 6.6, respectively. We conclude that the silicate systems are not likely to be useful as replacements for SiO2, while aluminates are more promising. ©2003 American Institute of Physics.

U2 - 10.1063/1.1603341

DO - 10.1063/1.1603341

M3 - Article

VL - 83

SP - 1459

EP - 1461

JO - Applied Physics Letters

JF - Applied Physics Letters

SN - 0003-6951

IS - 7

ER -