Computational analysis of span-wise hole locations on fluid flow and film cooling of internal channels with crescent ribs

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Purpose: This study aims to clarify the mechanism of film hole location at the span-wise direction of an internal cooling channel with crescent ribs on the adiabatic film cooling performance, three configurations are designed to observe the effects of the distance between the center of the ellipse and the side wall(Case 1, l = w/2, Case 2, l = w/3 and for Case 3, l = w/4). Design/methodology/approach: Numerical simulations are conducted under two blowing ratios (i.e. 0.5 and 1) and a fixed cross-flow Reynolds number (Rec = 100,000) with a verified turbulence model. Findings: It is shown that at low blowing ratio, reducing the distance increases the film cooling effectiveness but keeps the trend of the effectiveness unchanged, while at high blowing ratio, the characteristic is a little bit different in the range of 0 = x/D = 10. Research limitations/implications: These features could be explained by the fact that shrinking the distance between the hole and side wall induces a much smaller reserved region and vortex downstream the ribs and a lower resistance for cooling air entering the film hole. Furthermore, the spiral flow inside the hole is impaired. Originality/value: As a result, the kidney-shaped vortices originating from the jet flow are weakened, and the target surface can be well covered, resulting in an enhancement of the adiabatic film cooling performance.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Northwestern Polytechnical University
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Strömningsmekanik och akustik

Nyckelord

Originalspråkengelska
Sidor (från-till)2728-2753
TidskriftInternational Journal of Numerical Methods for Heat and Fluid Flow
Volym29
Utgåva nummer8
Tidigt onlinedatum2019
StatusPublished - 2019
PublikationskategoriForskning
Peer review utfördJa