Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Background: The persistent environmental contaminants perfluoroalkyl substances (PFASs) have gained attention due to their potential adverse health effects, in particular following early life exposure. Information on human fetal exposure to PFASs is currently limited to one report on first trimester samples. There is no data available on PFAS concentrations in fetal organs throughout all three trimesters of pregnancy. Methods: We measured the concentrations of perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorohexane sulfonic acid (PFHxS) in human embryos and fetuses with corresponding placentas and maternal serum samples derived from elective pregnancy terminations and cases of intrauterine fetal death. A total of 78 embryos and fetuses aged 7–42 gestational weeks were included and a total of 225 fetal organs covering liver, lung, heart, central nervous system (CNS), and adipose tissue were analyzed, together with 71 placentas and 63 maternal serum samples. PFAS concentrations were assayed by liquid chromatography/triple quadrupole mass spectrometry. Results: All evaluated PFASs were detected and quantified in maternal sera, placentas and embryos/fetuses. In maternal serum samples, PFOS was detected in highest concentrations, followed by PFOA > PFNA > PFDA = PFUnA = PFHxS. Similarly, PFOS was detected in highest concentrations in embryo/fetal tissues, followed by PFOA > PFNA = PFDA = PFUnA. PFHxS was detected in very few fetuses. In general, PFAS concentrations in embryo/fetal tissue (ng/g) were lower than maternal serum (ng/ml) but similar to placenta concentrations. The total PFAS burden (i.e. the sum of all PFASs) was highest in lung tissue in first trimester samples and in liver in second and third trimester samples. The burden was lowest in CNS samples irrespective of fetal age. The placenta:maternal serum ratios of PFOS, PFOA and PFNA increased across gestation suggesting bioaccumulation in the placenta. Further, we observed that the ratios were higher in pregnancies with male fetuses compared to female fetuses. Conclusions: Human fetuses were intrinsically exposed to a mixture of PFASs throughout gestation. The compounds were detected in all analyzed tissues, suggesting that PFASs reach and may affect many types of organs. Collectively, our results demonstrate that PFASs pass the placenta and deposit to embryo and fetal tissues, calling for risk assessment of gestational exposures.

Detaljer

Författare
  • Linn Salto Mamsen
  • Richelle D. Björvang
  • Daniel Mucs
  • Marie Therese Vinnars
  • Nikos Papadogiannakis
  • Christian H. Lindh
  • Claus Yding Andersen
  • Pauliina Damdimopoulou
Enheter & grupper
Externa organisationer
  • Copenhagen University Hospital
  • Karolinska University Hospital
  • Karolinska Institute
  • University of Copenhagen
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Reproduktionsmedicin och gynekologi
  • Miljömedicin och yrkesmedicin

Nyckelord

Originalspråkengelska
Sidor (från-till)482-492
Antal sidor11
TidskriftEnvironment International
Volym124
StatusPublished - 2019
PublikationskategoriForskning
Peer review utfördJa