Continuous crossover from two-dimensional to one-dimensional electronic properties for metallic silicide nanowires

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift


In a joint experimental and theoretical study on metallic TbSi2 nanowires, we observe a continuous crossover from a two-dimensional (2D) to a quasi-one-dimensional (1D) electronic structure by reduction of the nanowire width. The nanowires were grown by self-organization on vicinal Si(111) substrates denoted by the Miller indices (hhk). Their electronic structure was analyzed by angle-resolved photoemission spectroscopy (ARPES) and calculated using density functional theory (DFT). In ARPES, the TbSi2 nanowires show basically the 2D electronic structure of the TbSi2 film on planar Si(111) with an increasing momentum broadening for decreasing nanowire widths, consistent with Heisenberg's uncertainty principle. In contrast, DFT calculations predict a purely 1D electronic structure for TbSi2 nanowires. Unfolding this 1D electronic structure onto the Brillouin zone of the TbSi2 film leads to a Fermi surface appearing similar to the one of the 2D TbSi2 film, but with an additional 1D contribution from nanowire edges. Such an additional 1D signature is also observed in ARPES for narrow nanowires. These results indicate a continuous transition to a 1D electronic structure for decreasing nanowire widths.


  • Stephan Appelfeller
  • Kris Holtgrewe
  • Martin Franz
  • Lars Freter
  • Christian Hassenstein
  • Hans Ferdinand Jirschik
  • Simone Sanna
  • Mario Dähne
Enheter & grupper
Externa organisationer
  • Technical University of Berlin
  • Justus Liebig University Giessen
  • Jülich Research Centre

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Den kondenserade materiens fysik
TidskriftPhysical Review B
Utgåva nummer11
StatusPublished - 2020
Peer review utfördJa