Convergence of the implicit-explicit Euler scheme applied to perturbed dissipative evolution equations

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

We present a convergence analysis for the implicit-explicit (IMEX) Euler discretization of nonlinear evolution equations. The governing vector field of such an equation is assumed to be the sum of an unbounded dissipative operator and a Lipschitz continuous perturbation. By employing the theory of dissipative operators on Banach spaces, we prove that the IMEX Euler and the implicit Euler schemes have the same convergence order, i.e., between one half and one depending on the initial values and the vector fields. Concrete applications include the discretization of diffusion-reaction systems, with fully nonlinear and degenerate diffusion terms. The convergence and efficiency of the IMEX Euler scheme are also illustrated by a set of numerical experiments.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)1975-1985
TidskriftMathematics of Computation
Volym82
Utgåva nummer284
StatusPublished - 2013
PublikationskategoriForskning
Peer review utfördJa

Nedladdningar

Ingen tillgänglig data

Relaterad forskningsoutput

Tony Stillfjord, 2015, Centre for Mathematical Sciences, Lund University. 129 s.

Forskningsoutput: AvhandlingDoktorsavhandling (sammanläggning)

Visa alla (1)

Relaterade aktiviteter

Hansen, E. (Första/primär/huvudhandledare)
20112015

Aktivitet: Examination och handledarskapHandledning av forskarstuderande

Visa alla (1)