Convergence Speed of Coupling Iterations for the Unsteady Transmission Problem

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceeding

Abstract

We present an estimate for the convergence rate of the Dirichlet-Neumann
iteration for the discretized unsteady transmission problem. Specifically, we consider the coupling of two heat equations on two identical squared domains. The Laplacian is discretized by second order central finite differences and the implicit Euler method is used for the time discretization. For the semidiscrete case, Henshaw and Chad provided in
2009 a method to analyse stability and convergence speed based on applying the continuous Fourier transform to the semi-discretized equations. Numerical results for the fully discrete case show differences, which is why we propose a complementary analysis based on approximating the spectral radius of the iteration matrix. Numerical results are presented to illustrate the analysis.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Beräkningsmatematik

Nyckelord

Originalspråkengelska
Titel på värdpublikationVI International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS 2015), Proceedings of the
RedaktörerBernhard A. Schrefler, Eugenio Oñate, Manolis Papadrakakis
FörlagCIMNE
Sidor452-463
Antal sidor12
ISBN (tryckt)978-84-943928-3-2
StatusPublished - 2015
PublikationskategoriForskning
Peer review utfördJa
EvenemangVI International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS 2015) - Venice (Italy)
Varaktighet: 2015 maj 182015 maj 20

Konferens

KonferensVI International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS 2015)
Period2015/05/182015/05/20