Counting paths and packings in halves

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceeding

Abstract

We show that; one can count k-edge paths in an n-vertex graph and m-set k-packings on an n-element universe, respectively, in time (n k/2) and (n mk/2) up to a factor polynomial in n, k, and in: in polynomial space, the bounds hold if multiplied by 3(k/2) or 5(mk/2), respectively. These are implications of a more general result: given two set families on an n-element universe, one can count the disjoint pairs of sets in the Cartesian product of the two families with O(The) basic operations, where e is the number of members in the two families and their subsets.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Datavetenskap (datalogi)
Originalspråkengelska
Titel på värdpublikationAlgorithms - ESA 2009, Proceedings/Lecture notes in computer science
FörlagSpringer
Sidor578-586
Volym5757
StatusPublished - 2009
PublikationskategoriForskning
Peer review utfördJa
Evenemang17th Annual European Symposium on Algorithms - Copenhagen, DENMARK
Varaktighet: 2009 sep 72009 sep 9

Publikationsserier

Namn
Volym5757
ISSN (tryckt)1611-3349
ISSN (elektroniskt)0302-9743

Konferens

Konferens17th Annual European Symposium on Algorithms
Period2009/09/072009/09/09