Coupling stochastic EM and approximate Bayesian computation for parameter inference in state-space models

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

We study the class of state-space models and perform maximum likelihood estimation for the model parameters. We consider a stochastic approximation expectation–maximization (SAEM) algorithm to maximize the likelihood function with the novelty of using approximate Bayesian computation (ABC) within SAEM. The task is to provide each iteration of SAEM with a filtered state of the system, and this is achieved using an ABC sampler for the hidden state, based on sequential Monte Carlo methodology. It is shown that the resulting SAEM-ABC algorithm can be calibrated to return accurate inference, and in some situations it can outperform a version of SAEM incorporating the bootstrap filter. Two simulation studies are presented, first a nonlinear Gaussian state-space model then a state-space model having dynamics expressed by a stochastic differential equation. Comparisons with iterated filtering for maximum likelihood inference, and Gibbs sampling and particle marginal methods for Bayesian inference are presented.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • University Grenoble Alpes
  • Laboratoire Jean Kuntzmann
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Sannolikhetsteori och statistik

Nyckelord

Originalspråkengelska
Sidor (från-till)179-212
TidskriftComputational Statistics
Volym33
Utgivningsnummer1
Tidigt onlinedatum2017 okt 23
StatusPublished - 2018 mar
PublikationskategoriForskning
Peer review utfördJa

Related projects

Visa alla (1)