Designing pi-stacked molecular structures to control heat transport through molecular junctions
Forskningsoutput: Tidskriftsbidrag › Artikel i vetenskaplig tidskrift
Abstract
We propose and analyze a way of using pi stacking to design molecular junctions that either enhance or suppress a phononic heat current, but at the same time remain conductors for an electric current. Such functionality is highly desirable in thermoelectric energy converters, as well as in other electronic components where heat dissipation should be minimized or maximized. We suggest a molecular design consisting of two masses coupled to each other with one mass coupled to each lead. By having a small coupling (spring constant) between the masses, it is possible to either reduce or perhaps more surprisingly enhance the phonon conductance. We investigate a simple model system to identify optimal parameter regimes and then use first principle calculations to extract model parameters for a number of specific molecular realizations, confirming that our proposal can indeed be realized using standard molecular building blocks. (C) 2014 AIP Publishing LLC.
Detaljer
Författare | |
---|---|
Enheter & grupper | |
Externa organisationer |
|
Forskningsområden | Ämnesklassifikation (UKÄ) – OBLIGATORISK
|
Originalspråk | engelska |
---|---|
Artikelnummer | 233102 |
Tidskrift | Applied Physics Letters |
Volym | 105 |
Utgåva nummer | 23 |
Status | Published - 2014 |
Publikationskategori | Forskning |
Peer review utförd | Ja |