Determination of microbial fatty acid profiles at femtomolar levels in human urine and the initial marine microfouling community by capillary gas chromatography-chemical ionization mass spectrometry with negative ion detection

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Room temperature esterification with the electron capturing pentafluorobenzyl bromide in glass capillaries, with analysis by capillary gas-liquid chromatography coupled with chemical ionization mass spectrometry and negative ion detection in the selected ion mode, allowed detection and identification of fatty acids from microbial biofilms at the femtomolar level. This sensitivity was achieved without loss of specificity of the mass spectrometric analysis. The detection of all the fatty acids commonly associated with bacteria was quantitative and linearly related to their concentration at a sensitivity permitting detection of about 600 bacteria the size of Escherichia coli. With this technique it was possible to detect the characteristic 3-hydroxy fatty acid of the lipopolysaccharide lipid A of E. coli infecting human urine at concentrations representing 10 4 bacteria and define the community structure of the initial marine microfouling community attached to a teflon surface at concentrations below the detectability by gas chromatography with flame ionization detection.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Lund University
  • Florida State University
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Mikrobiologi

Nyckelord

Originalspråkengelska
Sidor (från-till)331-344
TidskriftJournal of Microbiological Methods
Volym3
Utgåva nummer5-6
StatusPublished - 1985 jan 1
PublikationskategoriForskning
Peer review utfördJa