Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Liquid-liquid flow patterns and slug hydrodynamics were experimentally studied in non-circular glass microchannels with water-butanol, water-toluene, water–oil and water-hexane systems, considering various hydraulic diameters (600 µm, 400 µm, 200 µm), inlet junctions (crossed, T) and aspect ratios (0.5, 1). The aqueous phase was the continuous phase due to the hydrophilic microchannel walls and the organic phase was the dispersed phase. Three main flow patterns were observed, i.e., annular flow, slug flow and droplet flow. The mechanism of flow pattern formation was explained by a force analysis, based on which, a dimensionless analysis regarding Weber number and Reynolds number was performed to develop general flow pattern transition criteria. Additionally, slug velocities and slug length were investigated. A new scaling law was proposed to predict the slug length and it showed a good agreement with the experimental results. A linear relationship between the slug velocity and the bulk velocity of the two phases was obtained.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Strömningsmekanik och akustik

Nyckelord

Originalspråkengelska
Sidor (från-till)604-615
Antal sidor12
TidskriftChemical Engineering Journal
Volym344
StatusPublished - 2018 jul 15
PublikationskategoriForskning
Peer review utfördJa