Effect of Insulin‐Induced Hypoglycemia on the Concentrations of Glutamate and Related Amino Acids and Energy Metabolites in the Intact and Decorticated Rat Neostriatum
Forskningsoutput: Tidskriftsbidrag › Artikel i vetenskaplig tidskrift
Standard
Effect of Insulin‐Induced Hypoglycemia on the Concentrations of Glutamate and Related Amino Acids and Energy Metabolites in the Intact and Decorticated Rat Neostriatum. / Engelsen, Bernt; Westerberg, Eva; Fonnum, Frode; Wieloch, Tadeusz.
I: Journal of Neurochemistry, Vol. 47, Nr. 5, 01.01.1986, s. 1634-1641.Forskningsoutput: Tidskriftsbidrag › Artikel i vetenskaplig tidskrift
Harvard
APA
CBE
MLA
Vancouver
Author
RIS
TY - JOUR
T1 - Effect of Insulin‐Induced Hypoglycemia on the Concentrations of Glutamate and Related Amino Acids and Energy Metabolites in the Intact and Decorticated Rat Neostriatum
AU - Engelsen, Bernt
AU - Westerberg, Eva
AU - Fonnum, Frode
AU - Wieloch, Tadeusz
PY - 1986/1/1
Y1 - 1986/1/1
N2 - Abstract The glutamate (Glu) terminals in rat neostriatum were removed by a unilateral frontal decortication. One to two weeks later the effects of insulin‐induced hypoglycemia on the steady‐state levels of amino acids [Glu, glutamine (Gin), aspartate (Asp), γ‐aminobutyric acid (GABA), tau‐rine] and energy metabolites (glucose, glycogen, α‐ketoglu‐tarate, pyruvate, lactate, ATP, ADP, AMP, phosphocre‐atine) were examined in the intact and decorticated neostriatum from brains frozen in situ. The changes in the metabolite levels were examined during normoglycemia, hypoglycemia with burst‐suppression (BS) EEG, after 5 and 30 min of hypoglycemic coma with isoelectric EEG, and 1 h of recovery following 30 min of isoelectric EEG. In normoglycemia Glu decreased and Gin and glycogen increased significantly on the decorticated side. During the BS period no significant differences in the measured compounds were noted between the two sides. After 5 min of isoelectric EEG Glu, Gin, GABA, and ATP levels were significantly lower and Asp higher on the intact than on the decorticated side. No differences between the two sides were found after 30 min of isoelectric EEG. After 1 h of recovery from 30 min of isoelectric EEG Glu, Gin, and glycogen had not reached their control levels. Glu was significantly lower, and Gin and glycogen higher on the decorticated side. The Asp and GABA levels were not significantly different from control levels. The results indicate that the turnover of Glu is higher in the intact than in decorticated neostriatum during profound hypoglycemia.
AB - Abstract The glutamate (Glu) terminals in rat neostriatum were removed by a unilateral frontal decortication. One to two weeks later the effects of insulin‐induced hypoglycemia on the steady‐state levels of amino acids [Glu, glutamine (Gin), aspartate (Asp), γ‐aminobutyric acid (GABA), tau‐rine] and energy metabolites (glucose, glycogen, α‐ketoglu‐tarate, pyruvate, lactate, ATP, ADP, AMP, phosphocre‐atine) were examined in the intact and decorticated neostriatum from brains frozen in situ. The changes in the metabolite levels were examined during normoglycemia, hypoglycemia with burst‐suppression (BS) EEG, after 5 and 30 min of hypoglycemic coma with isoelectric EEG, and 1 h of recovery following 30 min of isoelectric EEG. In normoglycemia Glu decreased and Gin and glycogen increased significantly on the decorticated side. During the BS period no significant differences in the measured compounds were noted between the two sides. After 5 min of isoelectric EEG Glu, Gin, GABA, and ATP levels were significantly lower and Asp higher on the intact than on the decorticated side. No differences between the two sides were found after 30 min of isoelectric EEG. After 1 h of recovery from 30 min of isoelectric EEG Glu, Gin, and glycogen had not reached their control levels. Glu was significantly lower, and Gin and glycogen higher on the decorticated side. The Asp and GABA levels were not significantly different from control levels. The results indicate that the turnover of Glu is higher in the intact than in decorticated neostriatum during profound hypoglycemia.
KW - Energy metabolism
KW - Glutamate turnover
KW - Hypoglycemia
KW - Neostriatum
U2 - 10.1111/j.1471-4159.1986.tb00806.x
DO - 10.1111/j.1471-4159.1986.tb00806.x
M3 - Article
C2 - 2876060
AN - SCOPUS:0023008555
VL - 47
SP - 1634
EP - 1641
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
SN - 1471-4159
IS - 5
ER -