Eigenfrequency constrained topology optimization of finite strain hyperelastic structures

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

This paper incorporates hyperelastic materials, nonlinear kinematics, and preloads in eigenfrequency constrained density–based topology optimization. The formulation allows for initial finite deformations and subsequent small harmonic oscillations. The optimization problem is solved by the method of moving asymptotes, and the gradients are calculated using the adjoint method. Both simple and degenerate eigenfrequencies are considered in the sensitivity analysis. A well-posed topology optimization problem is formulated by filtering the volume fraction field. Numerical issues associated with excessive distortion and spurious eigenmodes in void regions are reduced by removing low volume fraction elements. The optimization objective is to maximize stiffness subject to a lower bound on the fundamental eigenfrequency. Numerical examples show that the eigenfrequencies drastically change with the load magnitude, and that the optimization is able to produce designs with the desired fundamental eigenfrequency.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Lawrence Livermore National Laboratory
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Beräkningsmatematik
  • Teknisk mekanik

Nyckelord

Originalspråkengelska
Sidor (från-till)2577-2594
Antal sidor18
TidskriftStructural and Multidisciplinary Optimization
Volym61
Utgåva nummer6
Tidigt onlinedatum2020 maj 17
StatusPublished - 2020 jun
PublikationskategoriForskning
Peer review utfördJa