Exact periodic traveling water waves with vorticity

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

For the classical inviscid water wave problem under the influence of gravity, described by the Euler equation with a free surface over a flat bottom, we construct periodic traveling waves with vorticity. They are symmetric waves whose profiles are monotone between each crest and trough. We use global bifurcation theory to construct a connected set of such solutions. This set contains flat waves as well as waves that approach flows with stagnation points.

Detaljer

Författare
  • Adrian Constantin
  • W Strauss
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik
Originalspråkengelska
Sidor (från-till)797-800
TidskriftComptes Rendus Mathématique
Volym335
Utgåva nummer10
StatusPublished - 2002
PublikationskategoriForskning
Peer review utfördJa