Fatigue damage assessment for a spectral model of non-Gaussian random loads

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

In this paper, anew model for random loads - the Laplace driven moving average - is presented. The model is second order, non-Gaussian, and strictly stationary. It shares with its Gaussian counterpart the ability to model any spectrum but has additional flexibility to model the skewness and kurtosis of the marginal distribution. Unlike most other non-Gaussian models proposed in the literature, such as the transformed Gaussian or Volterra series models, the new model is no longer derivable from Gaussian processes. In the paper, a summary of the properties of the new model is given and its upcrossing intensities are evaluated. Then it is used to estimate fatigue damage both from simulations and in terms of an upper bound that is of particular use for narrowband spectra. (C) 2009 Elsevier Ltd. All rights reserved.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Sannolikhetsteori och statistik

Nyckelord

Originalspråkengelska
Sidor (från-till)608-617
TidskriftProbabilistic Engineering Mechanics
Volym24
Utgåva nummer4
StatusPublished - 2009
PublikationskategoriForskning
Peer review utfördJa