Fermentation of Cauliflower and White Beans with Lactobacillus plantarum – Impact on Levels of Riboflavin, Folate, Vitamin B12, and Amino Acid Composition

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

Fermentation of Cauliflower and White Beans with Lactobacillus plantarum – Impact on Levels of Riboflavin, Folate, Vitamin B12, and Amino Acid Composition. / Thompson, H. O.; Önning, G.; Holmgren, K.; Strandler, H. S.; Hultberg, M.

I: Plant Foods for Human Nutrition, 06.03.2020.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Fermentation of Cauliflower and White Beans with Lactobacillus plantarum – Impact on Levels of Riboflavin, Folate, Vitamin B12, and Amino Acid Composition

AU - Thompson, H. O.

AU - Önning, G.

AU - Holmgren, K.

AU - Strandler, H. S.

AU - Hultberg, M.

PY - 2020/3/6

Y1 - 2020/3/6

N2 - As diets change in response to ethical, environmental, and health concerns surrounding meat consumption, fermentation has potential to improve the taste and nutritional qualities of plant-based foods. In this study, cauliflower, white beans, and a 50:50 cauliflower-white bean mixture were fermented using different strains of Lactobacillus plantarum. In all treatments containing cauliflower, the pH was reduced to <4 after 18 h, while treatments containing only white beans had an average pH of 4.8 after 18 h. Following fermentation, the riboflavin, folate, and vitamin B12 content of the cauliflower-white bean mixture was measured, and compared against that of an unfermented control. The riboflavin and folate content of the mixture increased significantly after fermentation. Relative to control samples, riboflavin increased by 76–113%, to 91.6 ± 0.6 μg/100 g fresh weight, and folate increased by 32–60%, to 58.8 ± 2.0 μg/100 g fresh weight. For one bacterial strain, L. plantarum 299, a significant 66% increase in vitamin B12 was observed, although the final amount (0.048 ± 0.013 μg/100 g fresh weight) was only a small fraction of recommended daily intake. Measurements of amino acid composition in the mixture revealed small increases in alanine, glycine, histidine, isoleucine, leucine, and valine in the fermented sample compared to the unfermented control.

AB - As diets change in response to ethical, environmental, and health concerns surrounding meat consumption, fermentation has potential to improve the taste and nutritional qualities of plant-based foods. In this study, cauliflower, white beans, and a 50:50 cauliflower-white bean mixture were fermented using different strains of Lactobacillus plantarum. In all treatments containing cauliflower, the pH was reduced to <4 after 18 h, while treatments containing only white beans had an average pH of 4.8 after 18 h. Following fermentation, the riboflavin, folate, and vitamin B12 content of the cauliflower-white bean mixture was measured, and compared against that of an unfermented control. The riboflavin and folate content of the mixture increased significantly after fermentation. Relative to control samples, riboflavin increased by 76–113%, to 91.6 ± 0.6 μg/100 g fresh weight, and folate increased by 32–60%, to 58.8 ± 2.0 μg/100 g fresh weight. For one bacterial strain, L. plantarum 299, a significant 66% increase in vitamin B12 was observed, although the final amount (0.048 ± 0.013 μg/100 g fresh weight) was only a small fraction of recommended daily intake. Measurements of amino acid composition in the mixture revealed small increases in alanine, glycine, histidine, isoleucine, leucine, and valine in the fermented sample compared to the unfermented control.

KW - B-vitamins

KW - Brassica oleracea

KW - Lactic acid bacteria

KW - Nutritional quality

KW - Phaseolus vulgaris

UR - http://www.scopus.com/inward/record.url?scp=85080933249&partnerID=8YFLogxK

U2 - 10.1007/s11130-020-00806-2

DO - 10.1007/s11130-020-00806-2

M3 - Article

JO - Plant Foods for Human Nutrition

JF - Plant Foods for Human Nutrition

SN - 1573-9104

ER -