Few-cycle lightwave-driven currents in a semiconductor at high repetition rate

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

When an intense, few-cycle light pulse impinges on a dielectric or semiconductor material, the electric field will interact nonlinearly with the solid, driving a coherent current. An asymmetry of the ultrashort, carrier-envelope-phase-stable waveform results in a net transfer of charge, which can be measured by macroscopic electric contact leads. This effect has been pioneered with extremely short, single-cycle laser pulses at low repetition rate, thus limiting the applicability of its potential for ultrafast electronics. We investigate lightwave-driven currents in gallium nitride using few-cycle laser pulses of nearly twice the duration and at a repetition rate 2 orders of magnitude higher than in previous work. We successfully simulate our experimental data with a theoretical model based on interfering multiphoton transitions, using the exact laser pulse shape retrieved from dispersion-scan measurements. Substantially increasing the repetition rate and relaxing the constraint on the pulse duration marks an important step forward toward applications of controlling currents with light.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • TEM Messtechnik GmbH
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Atom- och molekylfysik och optik
Originalspråkengelska
Sidor (från-till)276-279
Antal sidor4
TidskriftOptica
Volym7
Utgåva nummer4
StatusPublished - 2020 apr 1
PublikationskategoriForskning
Peer review utfördJa