Galerkin/Runge-Kutta discretizations of nonlinear parabolic equations

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Global error bounds are derived for full Galerkin/Runge-Kutta discretizations of nonlinear parabolic problems, including the evolution governed by the p-Laplacian with p >= 2. The analysis presented here is not based on linearization procedures, but on the fully nonlinear framework of logarithmic Lipschitz constants and an extended B-convergence theory. The global error is bounded in L-2 by Delta x(r/2) + Delta t(q). where r is the convergence order of the Galerkin method applied to the underlying stationary problem and q is the stiff order of the algebraically stable Runge-Kutta method. (c) 2006 Elsevier B.V. All rights reserved.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)882-890
TidskriftJournal of Computational and Applied Mathematics
Volym205
Utgåva nummer2
StatusPublished - 2007
PublikationskategoriForskning
Peer review utfördJa