Gold cleaning methods for electrochemical detection applications

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

Gold cleaning methods for electrochemical detection applications. / Fischer, Lee M.; Tenje, Maria; Heiskanen, Arto R.; Masuda, Noriyuki; Castillo Leon, Jaime; Bentien, Anders; Emnéus, Jenny; Jakobsen, Mogens H.; Boisen, Anja.

I: Microelectronic Engineering, Vol. 86, Nr. 4-6, 2009, s. 1282-1285.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Harvard

Fischer, LM, Tenje, M, Heiskanen, AR, Masuda, N, Castillo Leon, J, Bentien, A, Emnéus, J, Jakobsen, MH & Boisen, A 2009, 'Gold cleaning methods for electrochemical detection applications', Microelectronic Engineering, vol. 86, nr. 4-6, s. 1282-1285. https://doi.org/10.1016/j.mee.2008.11.045

APA

Fischer, L. M., Tenje, M., Heiskanen, A. R., Masuda, N., Castillo Leon, J., Bentien, A., Emnéus, J., Jakobsen, M. H., & Boisen, A. (2009). Gold cleaning methods for electrochemical detection applications. Microelectronic Engineering, 86(4-6), 1282-1285. https://doi.org/10.1016/j.mee.2008.11.045

CBE

Fischer LM, Tenje M, Heiskanen AR, Masuda N, Castillo Leon J, Bentien A, Emnéus J, Jakobsen MH, Boisen A. 2009. Gold cleaning methods for electrochemical detection applications. Microelectronic Engineering. 86(4-6):1282-1285. https://doi.org/10.1016/j.mee.2008.11.045

MLA

Vancouver

Fischer LM, Tenje M, Heiskanen AR, Masuda N, Castillo Leon J, Bentien A et al. Gold cleaning methods for electrochemical detection applications. Microelectronic Engineering. 2009;86(4-6):1282-1285. https://doi.org/10.1016/j.mee.2008.11.045

Author

Fischer, Lee M. ; Tenje, Maria ; Heiskanen, Arto R. ; Masuda, Noriyuki ; Castillo Leon, Jaime ; Bentien, Anders ; Emnéus, Jenny ; Jakobsen, Mogens H. ; Boisen, Anja. / Gold cleaning methods for electrochemical detection applications. I: Microelectronic Engineering. 2009 ; Vol. 86, Nr. 4-6. s. 1282-1285.

RIS

TY - JOUR

T1 - Gold cleaning methods for electrochemical detection applications

AU - Fischer, Lee M.

AU - Tenje, Maria

AU - Heiskanen, Arto R.

AU - Masuda, Noriyuki

AU - Castillo Leon, Jaime

AU - Bentien, Anders

AU - Emnéus, Jenny

AU - Jakobsen, Mogens H.

AU - Boisen, Anja

N1 - The information about affiliations in this record was updated in December 2015. The record was previously connected to the following departments: Biomedical Engineering (011200011), Analytical Chemistry (S/LTH) (011001004)

PY - 2009

Y1 - 2009

N2 - This work investigates methods for obtaining reliably clean gold film surfaces. Nine gold cleaning methods are investigated here: UV ozone photoreactor; potassium hydroxide–hydrogen peroxide; potassium hydroxide potential sweep; sulfuric acid hydrogen peroxide; sulfuric acid potential cycling; hydrochloric acid potential cycling; dimethylamine borane reducing agent solutions at 25 and 65 °C; and a dilute form of Aqua Regia. Peak-current potential-differences obtained from cyclic voltammetry and charge transfer resistance obtained from electrochemical impedance spectroscopy, as well as X-ray photo-electron spectroscopy are used to characterize surface cleanliness. A low peak-current potential-difference and charge transfer resistance indicates a cleaner surface, as does a higher percentage of elemental gold on the electrode surface. The potassium hydroxide potential sweep method is found to leave the gold surface the cleanest overall.

AB - This work investigates methods for obtaining reliably clean gold film surfaces. Nine gold cleaning methods are investigated here: UV ozone photoreactor; potassium hydroxide–hydrogen peroxide; potassium hydroxide potential sweep; sulfuric acid hydrogen peroxide; sulfuric acid potential cycling; hydrochloric acid potential cycling; dimethylamine borane reducing agent solutions at 25 and 65 °C; and a dilute form of Aqua Regia. Peak-current potential-differences obtained from cyclic voltammetry and charge transfer resistance obtained from electrochemical impedance spectroscopy, as well as X-ray photo-electron spectroscopy are used to characterize surface cleanliness. A low peak-current potential-difference and charge transfer resistance indicates a cleaner surface, as does a higher percentage of elemental gold on the electrode surface. The potassium hydroxide potential sweep method is found to leave the gold surface the cleanest overall.

U2 - 10.1016/j.mee.2008.11.045

DO - 10.1016/j.mee.2008.11.045

M3 - Article

VL - 86

SP - 1282

EP - 1285

JO - Microelectronic Engineering

JF - Microelectronic Engineering

SN - 1873-5568

IS - 4-6

ER -