Graphs with equal domination and covering numbers

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

A dominating set of a graph G is a set D⊆ VG such that every vertex in VG- D is adjacent to at least one vertex in D, and the domination number γ(G) of G is the minimum cardinality of a dominating set of G. A set C⊆ VG is a covering set of G if every edge of G has at least one vertex in C. The covering number β(G) of G is the minimum cardinality of a covering set of G. The set of connected graphs G for which γ(G) = β(G) is denoted by Cγ = β, whereas B denotes the set of all connected bipartite graphs in which the domination number is equal to the cardinality of the smaller partite set. In this paper, we provide alternative characterizations of graphs belonging to Cγ = β and B. Next, we present a quadratic time algorithm for recognizing bipartite graphs belonging to B, and, as a side result, we conclude that the algorithm of Arumugam et al. (Discrete Appl Math 161:1859–1867, 2013) allows to recognize all the graphs belonging to the set Cγ = β in quadratic time either. Finally, we consider the related problem of patrolling grids with mobile guards, and show that it can be solved in O(nlog n+ m) time, where n is the number of line segments of the input grid and m is the number of its intersection points.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • University of Gdansk
  • State University of Applied Sciences in Elbląg
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)55-71
TidskriftJournal of Combinatorial Optimization
Volym39
Utgåva nummer1
Tidigt onlinedatum2019 okt 25
StatusPublished - 2020
PublikationskategoriForskning
Peer review utfördJa