Heat Transfer and Secondary Flow Characteristics in a Horizontally Round Pipe for Cooling a Scramjet Combustor by Supercritical n-Decane

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

To figure out the abnormal flow characteristics and thermal performance of supercritical fluids, some detailed information of supercritical pressure n-decane flowing in a horizontally round pipe is studied in terms of secondary flow induced by the huge density change or buoyancy force. According to an evaluation of turbulence models, the shear stress transport k-ω is suitable to execute the case of horizontal flow. It is observed that the temperature distributions between the upper wall region and the lower wall region are asymmetric and the location of the maximum buoyancy force coincided with the position of Tpc (pseudo-critical temperature). The generation of a rotating flow arising from the heated wall determines the occurrence of heat transfer deterioration (HTD). In the boom stage of the HTD phenomenon, a dead zone that is close to the upper wall was formed due to the influence of vortices. In contrast, the maximum buoyancy force is located in the core flow zone and it forces the fluid in the mainstream to participate in the cooling process of the heated wall. In addition, the dead zone in the vicinity of the upper wall is broken. This is the main reason why heat transfer deterioration could be inhibited effectively.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Northwestern Polytechnical University
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Energiteknik

Nyckelord

Originalspråkengelska
Artikelnummer022105
TidskriftJournal of Energy Resources Technology, Transactions of the ASME
Volym143
Utgåva nummer2
StatusPublished - 2021 feb 1
PublikationskategoriForskning
Peer review utfördJa