Heterogeneous nuclear ribonucleoprotein C proteins interact with the human papillomavirus type 16 (HPV16) early 3'-untranslated region and alleviate suppression of HPV16 late L1 mRNA splicing.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

Heterogeneous nuclear ribonucleoprotein C proteins interact with the human papillomavirus type 16 (HPV16) early 3'-untranslated region and alleviate suppression of HPV16 late L1 mRNA splicing. / Dhanjal, Soniya; Kajitani, Naoko; Glahder, Jacob; Mossberg, Anki; Johansson, Cecilia; Schwartz, Stefan.

I: Journal of Biological Chemistry, Vol. 290, Nr. 21, 2015, s. 13354-13371.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Heterogeneous nuclear ribonucleoprotein C proteins interact with the human papillomavirus type 16 (HPV16) early 3'-untranslated region and alleviate suppression of HPV16 late L1 mRNA splicing.

AU - Dhanjal, Soniya

AU - Kajitani, Naoko

AU - Glahder, Jacob

AU - Mossberg, Anki

AU - Johansson, Cecilia

AU - Schwartz, Stefan

PY - 2015

Y1 - 2015

N2 - In order to identify cellular factors that regulate human papillomavirus type 16 (HPV16) gene expression, cervical cancer cells permissive for HPV16 late gene expression were identified and characterized. These cells either contained a novel spliced variant of the L1 mRNAs that bypassed the suppressed HPV16 late, 5'-splice site SD3632, produced elevated levels of RNA-binding proteins SRSF1 (ASF/SF2), SRSF9 (SRp30c) and HuR that are known to regulate HPV16 late gene expression, or were shown by a gene expression array analysis to overexpress the RALYL RNA-binding protein of the heterogeneous nuclear ribonucleoprotein C (hnRNP C)-family. Overexpression of RALYL or hnRNP C1 induced HPV16 late gene expression from HPV16 subgenomic plasmids and from episomal forms of the full-length HPV16 genome. This induction was dependent on the HPV16 early untranslated region. Binding of hnRNP C1 to the HPV16 early, untranslated region activated HPV16 late 5'-splice site SD3632 and resulted in production of HPV16 L1 mRNAs. Our results suggested that hnRNP C1 controls HPV16 late gene expression.

AB - In order to identify cellular factors that regulate human papillomavirus type 16 (HPV16) gene expression, cervical cancer cells permissive for HPV16 late gene expression were identified and characterized. These cells either contained a novel spliced variant of the L1 mRNAs that bypassed the suppressed HPV16 late, 5'-splice site SD3632, produced elevated levels of RNA-binding proteins SRSF1 (ASF/SF2), SRSF9 (SRp30c) and HuR that are known to regulate HPV16 late gene expression, or were shown by a gene expression array analysis to overexpress the RALYL RNA-binding protein of the heterogeneous nuclear ribonucleoprotein C (hnRNP C)-family. Overexpression of RALYL or hnRNP C1 induced HPV16 late gene expression from HPV16 subgenomic plasmids and from episomal forms of the full-length HPV16 genome. This induction was dependent on the HPV16 early untranslated region. Binding of hnRNP C1 to the HPV16 early, untranslated region activated HPV16 late 5'-splice site SD3632 and resulted in production of HPV16 L1 mRNAs. Our results suggested that hnRNP C1 controls HPV16 late gene expression.

U2 - 10.1074/jbc.M115.638098

DO - 10.1074/jbc.M115.638098

M3 - Article

C2 - 25878250

VL - 290

SP - 13354

EP - 13371

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 1083-351X

IS - 21

ER -