High resolution scanning gate microscopy measurements on InAs/GaSb nanowire Esaki diode devices
Forskningsoutput: Tidskriftsbidrag › Artikel i vetenskaplig tidskrift
Standard
High resolution scanning gate microscopy measurements on InAs/GaSb nanowire Esaki diode devices. / Webb, James; Persson, Olof; Dick Thelander, Kimberly; Thelander, Claes; Timm, Rainer; Mikkelsen, Anders.
I: Nano Reseach, Vol. 7, Nr. 6, 2014, s. 877-887.Forskningsoutput: Tidskriftsbidrag › Artikel i vetenskaplig tidskrift
Harvard
APA
CBE
MLA
Vancouver
Author
RIS
TY - JOUR
T1 - High resolution scanning gate microscopy measurements on InAs/GaSb nanowire Esaki diode devices
AU - Webb, James
AU - Persson, Olof
AU - Dick Thelander, Kimberly
AU - Thelander, Claes
AU - Timm, Rainer
AU - Mikkelsen, Anders
PY - 2014
Y1 - 2014
N2 - Gated transport measurements are the backbone of electrical characterization of nanoscale electronic devices. Scanning gate microscopy (SGM) is one such gating technique that adds crucial spatial information, accessing the localized properties of semiconductor devices. Nanowires represent a central device concept due to the potential to combine very different materials. However, SGM on semiconductor nanowires has been limited to a resolution in the 50-100 nm range. Here, we present a study by SGM of newly developed III-V semiconductor nanowire InAs/GaSb heterojunction Esaki tunnel diode devices under ultra-high vacuum. Sub-5 nm resolution is demonstrated at room temperature via use of quartz resonator atomic force microscopy sensors, with the capability to resolve InAs nanowire facets, the InAs/GaSb tunnel diode transition and nanoscale defects on the device. We demonstrate that such measurements can rapidly give important insight into the device properties via use of a simplified physical model, without the requirement for extensive calculation of the electrostatics of the system. Interestingly, by precise spatial correlation of the device electrical transport properties and surface structure we show the position and existence of a very abrupt (<10 nm) electrical transition across the InAs/GaSb junction despite the change in material composition occurring only over 30-50 nm. The direct and simultaneous link between nanostructure composition and electrical properties helps set important limits for the precision in structural control needed to achieve desired device performance.
AB - Gated transport measurements are the backbone of electrical characterization of nanoscale electronic devices. Scanning gate microscopy (SGM) is one such gating technique that adds crucial spatial information, accessing the localized properties of semiconductor devices. Nanowires represent a central device concept due to the potential to combine very different materials. However, SGM on semiconductor nanowires has been limited to a resolution in the 50-100 nm range. Here, we present a study by SGM of newly developed III-V semiconductor nanowire InAs/GaSb heterojunction Esaki tunnel diode devices under ultra-high vacuum. Sub-5 nm resolution is demonstrated at room temperature via use of quartz resonator atomic force microscopy sensors, with the capability to resolve InAs nanowire facets, the InAs/GaSb tunnel diode transition and nanoscale defects on the device. We demonstrate that such measurements can rapidly give important insight into the device properties via use of a simplified physical model, without the requirement for extensive calculation of the electrostatics of the system. Interestingly, by precise spatial correlation of the device electrical transport properties and surface structure we show the position and existence of a very abrupt (<10 nm) electrical transition across the InAs/GaSb junction despite the change in material composition occurring only over 30-50 nm. The direct and simultaneous link between nanostructure composition and electrical properties helps set important limits for the precision in structural control needed to achieve desired device performance.
KW - nanowire
KW - scanning gate microscopy
KW - Esaki tunnel diode
KW - InAs
KW - GaSb
KW - III-V
KW - heterostructure
U2 - 10.1007/s12274-014-0449-4
DO - 10.1007/s12274-014-0449-4
M3 - Article
VL - 7
SP - 877
EP - 887
JO - Nano Reseach
JF - Nano Reseach
SN - 1998-0124
IS - 6
ER -