High-Density Lipoprotein–Associated Apolipoprotein M Limits Endothelial Inflammation by Delivering Sphingosine-1-Phosphate to the Sphingosine-1-Phosphate Receptor 1

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

High-Density Lipoprotein–Associated Apolipoprotein M Limits Endothelial Inflammation by Delivering Sphingosine-1-Phosphate to the Sphingosine-1-Phosphate Receptor 1. / Ruiz Garcia, Mario; Frej, Cecilia; Holmér, Andreas; Guo, Li J.; Tran, Sinh; Dahlbäck, Björn.

I: Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 37, Nr. 1, 01.2017, s. 118-129.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - High-Density Lipoprotein–Associated Apolipoprotein M Limits Endothelial Inflammation by Delivering Sphingosine-1-Phosphate to the Sphingosine-1-Phosphate Receptor 1

AU - Ruiz Garcia, Mario

AU - Frej, Cecilia

AU - Holmér, Andreas

AU - Guo, Li J.

AU - Tran, Sinh

AU - Dahlbäck, Björn

PY - 2017/1

Y1 - 2017/1

N2 - OBJECTIVE—: Plasma high-density lipoproteins (HDL) are potent antiatherogenic and anti-inflammatory particles. However, HDL particles are highly heterogenic in composition, and different HDL-mediated functions can be ascribed to different subclasses of HDL. Only a small HDL population contains apolipoprotein M (ApoM), which is the main plasma carrier of the bioactive lipid mediator sphingosine-1-phosphate (S1P). Vascular inflammation is modulated by S1P, but both pro- and anti-inflammatory roles have been ascribed to S1P. The goal of this study is to elucidate the role of ApoM and S1P in endothelial anti-inflammatory events related to HDL. APPROACH AND RESULTS—: Aortic or brain human primary endothelial cells were challenged with tumor necrosis factor-α (TNF-α) as inflammatory stimuli. The presence of recombinant ApoM-bound S1P or ApoM-containing HDL reduced the abundance of adhesion molecules in the cell surface, whereas ApoM and ApoM-lacking HDL did not. Specifically, ApoM-bound S1P decreased vascular adhesion molecule-1 (VCAM-1) and E-selectin surface abundance but not intercellular adhesion molecule-1. Albumin, which is an alternative S1P carrier, was less efficient in inhibiting VCAM-1 than ApoM-bound S1P. The activation of the S1P receptor 1 was sufficient and required to promote anti-inflammation. Moreover, ApoM-bound S1P induced the rearrangement of the expression of S1P-related genes to counteract TNF-α. Functionally, HDL/ApoM/S1P limited monocyte adhesion to the endothelium and maintained endothelial barrier integrity under inflammatory conditions. CONCLUSIONS—: ApoM-bound S1P is a key component of HDL and is responsible for several HDL-associated protective functions in the endothelium, including regulation of adhesion molecule abundance, leukocyte-endothelial adhesion, and endothelial barrier.

AB - OBJECTIVE—: Plasma high-density lipoproteins (HDL) are potent antiatherogenic and anti-inflammatory particles. However, HDL particles are highly heterogenic in composition, and different HDL-mediated functions can be ascribed to different subclasses of HDL. Only a small HDL population contains apolipoprotein M (ApoM), which is the main plasma carrier of the bioactive lipid mediator sphingosine-1-phosphate (S1P). Vascular inflammation is modulated by S1P, but both pro- and anti-inflammatory roles have been ascribed to S1P. The goal of this study is to elucidate the role of ApoM and S1P in endothelial anti-inflammatory events related to HDL. APPROACH AND RESULTS—: Aortic or brain human primary endothelial cells were challenged with tumor necrosis factor-α (TNF-α) as inflammatory stimuli. The presence of recombinant ApoM-bound S1P or ApoM-containing HDL reduced the abundance of adhesion molecules in the cell surface, whereas ApoM and ApoM-lacking HDL did not. Specifically, ApoM-bound S1P decreased vascular adhesion molecule-1 (VCAM-1) and E-selectin surface abundance but not intercellular adhesion molecule-1. Albumin, which is an alternative S1P carrier, was less efficient in inhibiting VCAM-1 than ApoM-bound S1P. The activation of the S1P receptor 1 was sufficient and required to promote anti-inflammation. Moreover, ApoM-bound S1P induced the rearrangement of the expression of S1P-related genes to counteract TNF-α. Functionally, HDL/ApoM/S1P limited monocyte adhesion to the endothelium and maintained endothelial barrier integrity under inflammatory conditions. CONCLUSIONS—: ApoM-bound S1P is a key component of HDL and is responsible for several HDL-associated protective functions in the endothelium, including regulation of adhesion molecule abundance, leukocyte-endothelial adhesion, and endothelial barrier.

UR - http://www.scopus.com/inward/record.url?scp=84996757788&partnerID=8YFLogxK

U2 - 10.1161/ATVBAHA.116.308435

DO - 10.1161/ATVBAHA.116.308435

M3 - Article

C2 - 27879252

AN - SCOPUS:84996757788

VL - 37

SP - 118

EP - 129

JO - Arteriosclerosis, Thrombosis and Vascular Biology

JF - Arteriosclerosis, Thrombosis and Vascular Biology

SN - 1524-4636

IS - 1

ER -