Influence of Severe Hypoglycemia on Brain Extracellular Calcium and Potassium Activities, Energy, and Phospholipid Metabolism

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Abstract: In the cerebral cortices of rats, during insulininduced hypoglycemia, changes in the concentrations of labile phosphate compounds [ATP, ADP, AMP, and phosphocreatine (PCr)] and glycolytic metabolites (lactate, pyruvate, and glucose) as well as phospholipids and free fatty acids (FFAs) were studied in relation to extracellular potassium and calcium activities. Changes in extracellular calcium and potassium activities occurred at approximately the onset of isoelectricity. The extracellular calcium activity dropped from 1.17 ± 0.14 mM to 0.18 ± 0.28 mM and the potassium activity rose from 3.4 ± 0.94 mM to 48 ± 12 mM (means ± SD). Minutes prior to this ionic change the levels of ATP, PCr, and phospholipids were unchanged while the levels of FFAs remained unchanged or slightly elevated. Following the first ionic change the steady‐state levels of ATP decreased by 40%, from 2.42 to 1.56 μmol/g. PCr levels decreased by 75%, from 4.58 to 1.26 μmol/g. Simultaneously, the levels of FFAs increased from 338 to 642 nmol/g, arachidonic acid displaying the largest relative increase, 33 to 130 nmol/g. The first ionic change was followed by a short period of normalization of ionic concentrations followed by a sustained ionic change. This was accompanied by a small additional decrease in ATP (to 1.26 μmol/g). The FEA levels increased to 704 nmol/g. There was a highly sig nificant negative correlation between the levels of FFAs and the energy charge of the tissue. The formation of FFAs was accompanied by a decrease in the phospholipid pool. The largest relative decrease was observed in the inositol phosphoglycerides, followed by serine and ethanolamine phosphoglycerides. After 10 min of isoelectricity the levels of phospholipids had decreased by 5.12 μmol/g while the levels of FFAs had increased by 0.46 μmol/g, indicating oxidative metabolism or washout of the released FFAs. The attenuation of the rapid initial changes in the levels of the energy metabolites and FFAs as well as the correlation between the energy charge and the levels of FFAs suggests that a new steady state is established following the first ionic change. The importance of these reactions for the development of hypogiycemic neuronal damage is discussed.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • University College London
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Neurovetenskaper

Nyckelord

Originalspråkengelska
Sidor (från-till)160-168
TidskriftJournal of Neurochemistry
Volym43
Utgåva nummer1
StatusPublished - 1984 jan 1
PublikationskategoriForskning
Peer review utfördJa