JEWEL - a Monte Carlo Model for Jet Quenching

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

The Monte Carlo model JEWEL 1.0 (Jet Evolution With Energy Loss) simulates parton shower evolution in the presence of a dense QCD medium. In its current form medium interactions are modelled as elastic scattering based on perturbative matrix elements and a simple prescription for medium induced gluon radiation. The parton shower is interfaced with a hadronisation model. In the absence of medium effects JEWEL is shown to reproduce jet measurements at LEP. The collisional energy loss is consistent with analytic calculations, but with JEWEL we can go a step further and characterise also jet-induced modifications of the medium. Elastic and inelastic medium interactions are shown to lead to distinctive modifications of the jet fragmentation pattern, which should allow to experimentally distinguish between collisional and radiative energy loss mechanisms. In these proceedings the main JEWEL results are summarised and a Monte Carlo algorithm is outlined that allows to include the Landau-Pomerantschuk-Migdal effect in probabilistic frameworks.

Detaljer

Författare
Externa organisationer
  • Heidelberg University
  • GSI Helmholtz Centre for Heavy Ion Research
  • CERN
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Subatomär fysik
Originalspråkengelska
Artikelnummer022
Antal sidor10
TidskriftProceedings of Science
Volym080
StatusPublished - 2009
PublikationskategoriForskning
Peer review utfördJa
Externt publiceradJa