Kinetics of premixed acetaldehyde plus air flames

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Non-stretched laminar burning velocities, SL, of acetaldehyde + air mixtures at initial gas mixture temperatures, T, of 298, 318, 338, 348 and 358 K are reported for the first time. The flames were stabilized on a perforated plate burner at 1 atm using the heat flux method at conditions where the net heat loss from the flame to the burner is zero. Uncertainties of the measurements were analyzed and assessed experimentally. The overall accuracy of the burning velocities was estimated to be typically better than + 1 cm/s. Experimental results were compared with predictions of several kinetic models from the literature. Recent model of Leplat et al. (2011) [30] developed for acetaldehyde and ethanol oxidation showed the closest agreement with the measurements as compared to the Konnov and San Diego models. The effects of initial temperature on the adiabatic laminar burning velocities of acetaldehyde were interpreted using the correlation S-L = S-L0 (T/T-0)(alpha). Particular attention was paid to the variation of the power exponent alpha with equivalence ratio. The existence of a minimum in alpha in the slightly rich mixtures is demonstrated experimentally and confirmed computationally. The model of Leplat et al. was further analyzed using sensitivity analysis and it was concluded that the deviation of the modelled results when comparing with experiments is not a result of the fuel specific reactions but rather the sub-mechanisms of C1 and H-2/O-2. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Atom- och molekylfysik och optik

Nyckelord

Originalspråkengelska
Sidor (från-till)499-506
TidskriftProceedings of the Combustion Institute
Volym35
StatusPublished - 2015
PublikationskategoriForskning
Peer review utfördJa