Learn to relax: Integrating 0-1 integer linear programming with pseudo-Boolean conflict-driven search

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Conflict-driven pseudo-Boolean solvers optimize 0-1 integer linear programs by extending the conflict-driven clause learning (CDCL) paradigm from SAT solving. Though pseudo-Boolean solvers have the potential to be exponentially more efficient than CDCL solvers in theory, in practice they can sometimes get hopelessly stuck even when the linear programming (LP) relaxation is infeasible over the reals. Inspired by mixed integer programming (MIP), we address this problem by interleaving incremental LP solving with cut generation within the conflict-driven pseudo-Boolean search. This hybrid approach, which for the first time combines MIP techniques with full-blown conflict analysis operating directly on linear inequalities using the cutting planes method, significantly improves performance on a wide range of benchmarks, approaching a “best-of-both-worlds” scenario between SAT-style conflict-driven search and MIP-style branch-and-cut.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • University of Copenhagen
  • Catholic University of Leuven
  • Zuse Institute Berlin (ZIB)
  • University Of Applied Sciences Berlin (HTW)
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Datavetenskap (datalogi)

Nyckelord

Originalspråkengelska
TidskriftConstraints
StatusE-pub ahead of print - 2021 jan 18
PublikationskategoriForskning
Peer review utfördJa