Limit Theorems and Fluctuations for Point Vortices of Generalized Euler Equations

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

We prove a mean field limit, a law of large numbers and a central limit theorem for a system of point vortices on the 2D torus at equilibrium with positive temperature. The point vortices are formal solutions of a class of equations generalising the Euler equations, and are also known in the literature as generalised inviscid SQG. The mean-field limit is a steady solution of the equations, the CLT limit is a stationary distribution of the equations.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • University of Pisa
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Sannolikhetsteori och statistik

Nyckelord

Originalspråkengelska
Artikelnummer60
TidskriftJournal of Statistical Physics
Volym182
Utgåva nummer3
StatusPublished - 2021
PublikationskategoriForskning
Peer review utfördJa