β-Mannan degradation by gut bacteria - Characterization of β-mannanases from families GH5 and GH26

Forskningsoutput: AvhandlingDoktorsavhandling (sammanläggning)

Abstract

Popular Abstract in Swedish
Människan lever inte bara själv, utan tillsammans med en mängd bakterier som lever i kroppen. Större delen av dessa lever i tjocktarmen. Dessa organismer är viktiga för vår hälsa. De stimulerar immunförsvaret, sänker pH i tarmen och gör det ogynnsamt för sjukdomsframkallande bakterier att växa till. Bakterierna lever i symbios med oss och med varandra. Förändringar i tarmfloran har kunnat kopplas till fetma, diabetes typ 1 och 2 och allergier.

För att få energi bryter bakterierna ner kolhydrater och fibrer. För att bryta ner kolhydrater behövs enzymer. Kolhydraterna som når tarmen är ofta sådanna som vi inte kan bryta ner för att vi inte har enzymer som kan bryta ner dem. Bakterierna har olika enzymer som bryter ner kolhydraterna, men många av dem har hittills inte studerats i detalj och man vet inte hur nedbrytningen av vissa fibrer fungerar i tarmen.

Eftersom bakterierna konkurrerar om maten med varandra måste de specialisera sig på vissa typer av kolhydrater som de bryter ner och får energi utav. Olika bakterier kan därför ha enzymer som bryter ner kolhydraterna på olika sätt och till olika produkter. Eftersom kolhydraterna är stora molekyler behöver bakterierna utsöndra enzymerna i omgivningen för att kunna bryta ner dem.

I vår forskargrupp studerar vi en typ av fibrer som kallas mannaner, mer specifikt β-mannaner. Mannaner består av långa kedjor av ihopkopplade sockermolekyler, precis som cellulosa, fast med ett socker som heter mannos i stället för glukos. Mannaner finns i kokos, kaffe och bajlväxter. De finns också i fruktkärnmjöl (E410), guarkärnmjöl (E412) och glukomannan (E425). Dessa växtbaserade sockermolekyler används som förtjockningsmedel i livsmedel, bl.a. glass. I min avhandling har jag studerat enzymer som kan bryta ner β-mannan till kortare kedjor av mannos. De kallas β-mannanaser.

Vi har studerat fyra olika mannanaser från tarmbakterier. Alla bakterier har inte mannanaser, så det första vi gör är att ta reda på vilka bakterier har dessa enzymer. Det finns flera sätt att göra det på. Vi har använt databaser, där forskare lägger upp DNA-sekvensen för bakterier för att se om där finns DNA-sekvenser som liknar de som kodar för kända mannanaser. När vi har hittat dem klipper vi ut genen och sätter in dem i en laboratoriestam av E. coli. Denna teknik kallas kloning. Sedan får E. coli tillverka mannanaset åt oss. När vi har framställt mannanaserna studerar vi hur de fungerar, vilken molekylstruktur de har, vilka nedbrytningsprodukter de ger, om de är känsliga för temperatur och surhet. Genom att studera enzymerna får vi även svar på vilka socker den relevanta bakterien troligen kan växa på, och på så sätt förutse vilka socker som skulle kunna gagna deras tillväxt.

Mannaner kan se olika ut beroende på vilken växt de kommer ifrån. Oftast består de inte bara av mannos, utan också av andra enkla sockerarter, t.ex. galaktos och glukos. P.g.a. att mannan består av olika sockerarter gör det svårare att bryta ner det och det behövs flera olika enzymer för att bryta ner mannan till mannos. Vi har funnit att mannanaserna från tarmfloran inte kan bryta ner alla typer av mannan. Ett mannanas från Bifidobacterium adolescentis kan bryta ner guarkärnmjöl (Paper II), som innehåller mycket galaktos, medan mannanaset från Bifidobacterium animalis lactis inte kan det (Paper IV).

Eftersom mannanerna är stora molekyler kan bakterierna inte ta upp dem som de är, utan behöver utsöndra enzymer som bryter ner dem för att sedan kunna ta upp de mindre bitarna. Det kan ske på flera sätt. Bifidobacterium adolescentis har sitt mannanas ankrat utanpå cellen (Paper II), medan Bifidobacterium animalis subsp. lactis sänder ut sitt mannanas i omgivningen (Paper IV). Bacteroides ovatus har två mannanaser. Ett av dessa är ankrat på cellväggen, medan det andra sitter innanför bakteriens cellmembran. Dessa två mannanaser får hjälp av ett till enzym i Bacteroides ovatus som knoppar av galaktoserna från mannanet (Paper III).

I ett av mina projekt studerar vi hälsoeffekten av olika långa mannan-molekyler från guarkärnmjöl. För att få molekylerna olika långa använde jag ett mannanas för att bryta ner dem på ett kontrollerat sätt. Vi har sedan sett att det spelar inget roll hur långa mannanerna är för att antalet bifidobakterier ska öka. Däremot såg vi skillnader i halter av vissa ämnen i blodet och levern, vilket tyder på skillnader i förjäsningen av mannan i tarmen (Paper I).

I mitt arbete har jag bidragit med kunskap om hur vissa tarmbakterier bryter mer mannan och vilka bakteriegrupper som ökar om man äter mannan. Genom dessa studier kan vi få reda på vilka fibrer vi ska äta för att ändra tarmfloran. Denna kunskapen är viktig för att kunna skapa balans i tarmfloran hos en sjuk person. Men detaljkunskap om enzymerna kan också användas för att se vilka enzymer som skulle passa att användas i industrin för att göra olika produkter som är baserade på förnyelsebara kolhydrater.

Detaljer

Författare
  • Evelina Kulcinskaja
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Biologiska vetenskaper

Nyckelord

Originalspråkengelska
KvalifikationDoktor
Tilldelande institution
Handledare/Biträdande handledare
Tilldelningsdatum2015 maj 22
Förlag
  • Department of Chemistry, Lund University
Tryckta ISBN978-91-7422-397-2
StatusPublished - 2015
PublikationskategoriForskning

Nedladdningar

Ingen tillgänglig data

Related projects

Patrick Adlercreutz, Irini Lazou Ahrén, Siv Ahrné, Said Alhamimi, Kristina E Andersson, Kristina E Andersson, Anna Månberger, Ulrika Axling, Ulrika Axling, Björn Bergenståhl, Karin Berger, Inger Björck, Camilla Bränning, Fredrik Bäckhed, Yoghatama Cindya Zanzer, Anders Danielsson, Birgitta Danielsson, Eva Degerman, Petr Dejmek, Estera Dey, Anestis Dougkas, Linda Ekström, Ann-Charlotte Eliasson, Christer Fahlgren, Peter Falck, Peter Falck, Tannaz Ghaffarzadegan, Yvonne Granfeldt, Carl Grey, Ulrika Gunnerud, Åsa Håkansson, Åsa Håkansson, Frida Hållenius, Frida Hållenius, Lina Haskå, Lina Haskå, Emilia Heimann, Per Hellstrand, Lovisa Heyman, Cecilia Holm Wallenberg, Ann-Kristin Holmén-Pålbrink, Olle Holst, Tina Immerstrand, Peter Immerzeel, Greta Jakobsdottir, Bengt Jeppsson, Elin Johansson, Maria Johansson, Maria Johansson, Margareta Johansson, Ulla Johansson, Helena Jones, E N Karlsson, Petia Kovatcheva-Datchary, Evelina Kulcinskaja, Mona Landin-Olsson, Caroline Linninge, Ali Marefati, Nittaya Marungruang, Göran Molin, Anne Nilsson, Einar Nilsson, Ulf Nilsson, Margareta Nyman, Eva Ohlson, Crister Olsson, Rickard Öste, Elin Östman, Lisbeth Persson, Stefan Persson, Merichel Plaza, Olena Prykhodko, Karl Radeborg, Marilyn Rayner, Liza Rosén, Margareta Sandahl, Jonna Sandberg, Malin Sjöö, Kerstin Skog, Peter Spégel, Henrik Stålbrand, Olov Sterner, Julia Svensson, Eden Tareke, Juscelino Tovar, Charlotta Turner, Björn Weström, Jie Xu & Yadong Zhong

2007/07/012018/01/31

Projekt: ForskningTvärvetenskaplig forskning

Visa alla (1)