Methane emissions from permafrost thaw lakes limited by lake drainage

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Thaw lakes in permafrost areas are sources of the strong greenhouse gas methane(1-5). They develop mostly in sedimentary lowlands with permafrost and a high excess ground ice volume, resulting in large areas covered with lakes and drained thaw-lake basins (DTLBs; refs 6,7). Their expansion is enhanced by climate warming, which boosts methane emission and contributes a positive feedback to future climate change(3,4,8). Modelling of thaw-lake growth is necessary to quantify this feedback. Here, we present a two-dimensional landscape-scale model that includes the entire life cycle of thaw lakes; initiation, expansion, drainage and eventual re-initiation. Application of our model to past and future lake expansion in northern Siberia shows that lake drainage strongly limits lake expansion, even under conditions of continuous permafrost. Our results suggest that methane emissions from thaw lakes in Siberia are an order of magnitude less alarming than previously suggested, although predicted lake expansion will still profoundly affect permafrost ecosystems and infrastructure.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Naturgeografi
Originalspråkengelska
Sidor (från-till)119-123
TidskriftNature Climate Change
Volym1
Utgåva nummer2
StatusPublished - 2011
PublikationskategoriForskning
Peer review utfördJa