Microfluidic Platform for the Continuous Production and Characterization of Multilamellar Vesicles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study
Forskningsoutput: Tidskriftsbidrag › Artikel i vetenskaplig tidskrift
Abstract
A microfluidic platform combined with synchrotron small-angle X-ray scattering (SAXS) was used for monitoring the continuous production of multilamellar vesicles (MLVs). Their production was fast and started to evolve within less than 0.43 s of contact between the lipids and the aqueous phase. To obtain nanoparticles with a narrow size distribution, it was important to use a modified hydrodynamic flow focusing (HFF) microfluidic device with narrower microchannels than those normally used for SAXS experiments. Monodispersed MLVs as small as 160 nm in size, with a polydispersity index (PDI) of approximately 0.15 were achieved. The nanoparticles produced were smaller and had a narrower size distribution than those obtained via conventional bulk mixing methods. This microfluidic platform therefore has a great potential for the continuous production of monodispersed NPs.
Detaljer
Författare | |
---|---|
Enheter & grupper | |
Externa organisationer |
|
Forskningsområden | Ämnesklassifikation (UKÄ) – OBLIGATORISK
|
Originalspråk | engelska |
---|---|
Sidor (från-till) | 73-79 |
Antal sidor | 7 |
Tidskrift | Journal of Physical Chemistry Letters |
Volym | 8 |
Utgåva nummer | 1 |
Status | Published - 2017 jan 5 |
Publikationskategori | Forskning |
Peer review utförd | Ja |