Multi-Space Seasonal Precipitation Prediction Model Applied to the Source Region of the Yangtze River, China

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

This paper developed a multi-space prediction model for seasonal precipitation using a high-resolution grid dataset (0.5° × 0.5°) together with climate indices. The model is based on principal component analyses (PCA) and artificial neural networks (ANN). Trend analyses show that mean annual and seasonal precipitation in the area is increasing depending on spatial location. For this reason, a multi-space model is especially suited for prediction purposes. The PCA-ANN model was examined using a 64-grid mesh over the source region of the Yangtze River (SRYR) and was compared to a traditional multiple regression model with a three-fold cross-validation method. Seasonal precipitation anomalies (1961–2015) were converted using PCA into principal components. Hierarchical lag relationships between principal components and each potential predictor were identified by Spearman rank correlation analyses. The performance was compared to observed precipitation and evaluated using mean absolute error, root mean squared error, and correlation coefficient. The proposed PCA-ANN model provides accurate seasonal precipitation prediction that is better than traditional regression techniques. The prediction results displayed good agreement with observations for all seasons with correlation coefficients in excess of 0.6 for all spatial locations.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Hohai University
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Vattenteknik
Originalspråkengelska
Antal sidor17
TidskriftWater (Switzerland)
Volym11
Utgåva nummer12
StatusPublished - 2019
PublikationskategoriForskning
Peer review utfördJa