Nanostructured Lipid-Based Films for Substrate-Mediated Applications in Biotechnology

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Amphiphilic in nature, lipids spontaneously self-assemble into a range of nanostructures in the presence of water. Among lipid self-assembled structures, liposomes and supported lipid bilayers have long held scientific interest for their main applications in drug delivery and plasma membrane models, respectively. In contrast, lipid-based multilayered membranes on solid supports only recently begin drawing scientists' attention. Current studies show that the stacking of multiple bilayers on a solid support yields cooperative structural and dynamic behavior that enables new functionalities. Lipid films provide compartmentalization, templating, and enhanced release of molecules of interest. Importantly, supported lipid phases exhibit long-range periodic nanoscale order and orientation that is tunable in response to a changing environment. Herein, the current understanding of lipid-based film research is summarized focusing on how unique structural characteristics enable the emergence of new applications including label-free biosensors, macroscale drug delivery, and substrate-mediated gene delivery. The authors' recent contributions focusing on the structural characterization of lipid-based films using small-angle X-ray scattering and atomic force microscopy are highlighted. In addition, new photothermally induced resonance and solid-state nuclear magnetic resonance data are described, providing insights into drug partition in lipid-based films as well as structure and dynamics at the molecular scale.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • University of Illinois at Urbana-Champaign
  • University of Maryland
  • National Bureau of Standards
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Materialkemi

Nyckelord

Originalspråkengelska
Artikelnummer1704356
TidskriftAdvanced Functional Materials
Volym28
Utgåva nummer9
Tidigt onlinedatum2018 jan 10
StatusPublished - 2018
PublikationskategoriForskning
Peer review utfördJa