New Probabilistic network models and algorithms for oncogenesis

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift


Chromosomal aberrations in solid tumors appear in complex patterns. It is important to understand how these patterns develop, the dynamics of the process, the temporal or even causal order between aberrations, and the involved pathways. Here we present network models for chromosomal aberrations and algorithms for training models based on observed data. Our models are generative probabilistic models that can be used to study dynamical aspects of chromosomal evolution in cancer cells. They are well suited for a graphical representation that conveys the pathways found in a dataset. By allowing only pairwise dependencies and partition aberrations into modules, in which all aberrations are restricted to have the same dependencies, we reduce the number of parameters so that datasets sizes relevant to cancer applications can be handled. We apply our framework to a dataset of colorectal cancer tumor karyotypes. The obtained model explains the data significantly better than a model where independence between the aberrations is assumed. In fact, the obtained model performs very well with respect to several measures of goodness of fit and is, with respect to repetition of the training, more or less unique.


Enheter & grupper

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Medicinsk genetik


Sidor (från-till)853-865
TidskriftJournal of Computational Biology
Utgåva nummer4
StatusPublished - 2006
Peer review utfördJa