Non-commutative Gröbner bases under composition

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Polynomial composition is the operation of replacing the variables in a polynomial with other polynomials. In this paper we give sufficient and necessary conditions on a set $Theta$ of noncommutative polynomials to assure that the set $G circ Theta$ of composed polynomials is a Gröbner basis in the free associative algebra whenever $G$ is. The subject was initiated by H. Hong, who treated the commutative analogue in (J. Symbolic Comput. 25 (1998), no. 5, 643--663).

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)4831-4851
TidskriftCommunications in Algebra
Volym29
Utgivningsnummer11
StatusPublished - 2001
PublikationskategoriForskning
Peer review utfördJa