Nonlinear approximation of functions in two dimensions by sums of exponential functions

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

We consider the problem of approximating a given function in two dimensions by a sum of exponential functions, with complex-valued exponents and coefficients. In contrast to Fourier representations where the exponentials are fixed, we consider the nonlinear problem of choosing both the exponents and coefficients. In this way we obtain accurate approximations with only few terms. Our approach is built on recent work done by G. Beylkin and L Monzon in the one-dimensional case. We provide constructive methods for how to find the exponents and the coefficients, and provide error estimates. We also provide numerical simulations where the method produces sparse approximations with substantially fewer terms than what a Fourier representation produces for the same accuracy. (c) 2009 Elsevier Inc. All rights reserved.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)156-181
TidskriftApplied and Computational Harmonic Analysis
Volym29
Utgivningsnummer2
StatusPublished - 2010
PublikationskategoriForskning
Peer review utfördJa