Numerical study on heat transfer enhancement for laminar flow in a tube with mesh conical frustum inserts

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift


Enhanced heat transfer tubes (EHTT) with segmented mesh-conical frustums are considered. Tube diameter and frustum apex angle are fixed as 20 mm and 60o, respectively. The height ratio of frustum and sliced part are set as a golden ratio (1.618). Laminar thermal-hydraulic performance and effects of some parameters, e.g., bottom frustum diameter and pitch, are numerically simulated. The equal equivalent diameter and total flow area criteria are adopted to simplify 3D mesh pores to 2D ones. Flow and temperature fields show large velocities and gradients close to the wall and smaller velocities in the bulk region. This enhances heat transfer with a limited pressure drop. EHTTs obtain 1.4 - 3.3 times higher heat transfer than bare tubes and the performance evaluation criterion (PEC) varies from 1.3 to 1.8. Nusselt number (Nu) and friction factor (f) correlations are proposed. New insights into heat transfer enhancement and tube configuration are provided.


Enheter & grupper
Externa organisationer
  • Shanghai Marine Diesel Engine Research Institute

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Energiteknik
Sidor (från-till)21-39
Antal sidor19
TidskriftNumerical Heat Transfer; Part A: Applications
Utgåva nummer1
StatusPublished - 2017 jul 3
Peer review utfördJa