On the convergence rate of the Dirichlet-Neumann iteration for unsteady thermal fluid structure interaction

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

We consider the Dirichlet-Neumann iteration for partitioned simulation of thermal fluid-structure interaction, also called conjugate heat transfer. We analyze its convergence rate for two coupled fully discretized 1D linear heat equations with jumps in the material coefficients across these. These are discretized using implicit Euler in time, a finite element method on one domain, a finite volume method on the other one and variable aspect ratio. We provide an exact formula for the spectral radius of the iteration matrix. This shows that for large time steps, the convergence rate is the aspect ratio times the quotient of heat conductivities and that decreasing the time step will improve the convergence rate. Numerical results confirm
the analysis and show that the 1D formula is a good estimator in 2D and even for nonlinear thermal FSI applications.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Annan maskinteknik
Originalspråkengelska
Sidor (från-till)525-541
TidskriftComputational Mechanics
Volym62
Utgivningsnummer3
Tidigt onlinedatum2017 nov 23
StatusPublished - 2018
PublikationskategoriForskning
Peer review utfördJa

Nedladdningar

Ingen tillgänglig data