On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

We consider a class of pseudodifferential evolution equations of the form u(t) + (n(u) + Lu)(x) = 0, in which L is a linear smoothing operator and n is at least quadratic near the origin; this class includes in particular the Whitham equation. A family of solitary-wave solutions is found using a constrained minimization principle and concentration-compactness methods for noncoercive functionals. The solitary waves are approximated by (scalings of) the corresponding solutions to partial differential equations arising as weakly nonlinear approximations; in the case of the Whitham equation the approximation is the Korteweg-deVries equation. We also demonstrate that the family of solitary-wave solutions is conditionally energetically stable.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik
Originalspråkengelska
Sidor (från-till)2903-2936
TidskriftNonlinearity
Volym25
Utgåva nummer10
StatusPublished - 2012
PublikationskategoriForskning
Peer review utfördJa