On the polarizability and capacitance of the cube

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

An efficient integral equation based solver is constructed for the electrostatic problem on domains with cuboidal inclusions. It can be used to compute the polarizability of a dielectric cube in a dielectric background medium at virtually every permittivity ratio for which it exists. For example, polarizabilities accurate to between five and ten digits are obtained (as complex limits) for negative permittivity ratios in minutes on a standard workstation. In passing, the capacitance of the unit cube is determined with unprecedented accuracy. With full rigor, we develop a natural mathematical framework suited for the study of the polarizability of Lipschitz domains. Several aspects of polarizabilities and their representing measures are clarified, including limiting behavior both when approaching the support of the measure and when deforming smooth domains into a non-smooth domain. The success of the mathematical theory is achieved through symmetrization arguments for layer potentials.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematik

Nyckelord

Originalspråkengelska
Sidor (från-till)445-468
TidskriftApplied and Computational Harmonic Analysis
Volym34
Utgivningsnummer3
StatusPublished - 2013
PublikationskategoriForskning
Peer review utfördJa

Nedladdningar

Ingen tillgänglig data