On the Semiclassical Analysis of the Ground State Energy of the Dirichlet Pauli Operator in Non-Simply Connected Domains

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

We consider the Dirichlet Pauli operator in bounded connected domains in the plane, with a semiclassical parameter. We show that the ground state energy of the Pauli operator is exponentially small as the semiclassical parameter tends to zero and estimate the decay rate. This extends our recent results discussing a recent paper by Ekholm–Kovařík–Portmann, including non-simply connected domains.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • University of Nantes
  • University of Paris-Sud
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Matematisk analys
Originalspråkengelska
Sidor (från-till)531–544
Antal sidor14
TidskriftJournal of Mathematical Sciences
Tidigt onlinedatum2017 sep 18
StatusPublished - 2017
PublikationskategoriForskning
Peer review utfördJa