Operando high-temperature near-ambient pressure X-ray photoelectron spectroscopy and impedance spectroscopy study of Ni−Ce0.9Gd0.1O2−δ solid oxide fuel cell anode

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Bibtex

@article{d4430f4469964a57a472e777da861797,
title = "Operando high-temperature near-ambient pressure X-ray photoelectron spectroscopy and impedance spectroscopy study of Ni−Ce0.9Gd0.1O2−δ solid oxide fuel cell anode",
abstract = "In this study we present the results of operando high temperature near-ambient-pressure x-ray photoelectron spectroscopy (HT-NAP-XPS) measurements of a pulsed laser deposited thin film Ni−Ce0.9Gd0.1O2−δ model electrode. In our measurements, we have used the novel three electrode dual-chamber electrochemical cell developed in our previous work at different H2 pressures and at different electrochemical conditions at around 650 °C. The possible redox reactions on the anode surface (Ni2+↔Ni0,Ce4+↔Ce3+) were investigated by HT-NAP-XPS technique simultaneously with electrochemical impedance spectroscopy measurements. The oxygen partial pressure in counter and reference electrode compartment was controlled at 0.2 bar. Changes in electronic structure of the Ce3d and Ni2p photoelectron spectra caused by electrode potential and H2 pressure variations were observed and estimated by curve fitting procedure. The O1s and valence band photoelectron signals were used for depth probing of the chemical composition and redox changes at Ni-GDC and for studying the influence of the electrochemical polarization on the chemical state of Ni-GDC surface atoms. As a result changes in oxidation state of electrode surface atoms caused by electrode polarization and oxide ion flux through the membrane were detected with simultaneous significant variation of electrochemical impedance.",
keywords = "EIS, NAP-XPS, Ni-GDC, Operando, Solid oxide fuel cell, Surface chemistry",
author = "Kuno Kooser and Tanel K{\"a}{\"a}mbre and Mihkel Vestli and Urmas Joost and Samuli Urpelainen and Mati Kook and Fabrice Bournel and Gallet, {Jean Jacques} and Enn Lust and Edwin Kukk and Gunnar Nurk",
year = "2020",
month = aug,
day = "8",
doi = "10.1016/j.ijhydene.2020.06.228",
language = "English",
journal = "International Journal of Hydrogen Energy",
issn = "1879-3487",
publisher = "Elsevier",

}