Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift


Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.


  • Agnes Psikuta
  • Kalev Kuklane
  • Anna Bogdan
  • George Havenith
  • Simon Annaheim
  • René M. Rossi
Enheter & grupper

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Fysiologi
  • Textil-, gummi- och polymermaterial
  • Produktionsteknik, arbetsvetenskap och ergonomi
Sidor (från-till)435-446
Antal sidor12
TidskriftInternational Journal of Biometeorology
Tidigt onlinedatum2015
StatusPublished - 2016
Peer review utfördJa