Optical Characterization of the Combustion Process inside a Large-Bore Dual-Fuel Two-Stroke Marine Engine by Using Multiple High-Speed Cameras

Forskningsoutput: Kapitel i bok/rapport/Conference proceedingKonferenspaper i proceeding

Abstract

Dual-fuel engines for marine propulsion are gaining in importance due to operational and environmental benefits. Here the combustion in a dual-fuel marine engine operating on diesel and natural gas, is studied using a multiple high-speed camera arrangement. By recording the natural flame emission from three different directions the flame position inside the engine cylinder can be spatially mapped and tracked in time. Through space carving a rough estimate of the three-dimensional (3D) flame contour can be obtained. From this contour, properties like flame length and height, as well as ignition locations can be extracted. The multi-camera imaging is applied to a dual-fuel marine two-stroke engine, with a bore diameter of 0.5 m and a stroke of 2.2 m. Both liquid and gaseous fuels are directly injected at high pressure, using separate injection systems. Optical access is obtained using borescope inserts, resulting in a minimum disturbance to the cylinder geometry. In this type of engine, with fuel injection from positions at the rim of the cylinder, the flame morphology becomes asymmetric. The optical spatial mapping and tracking method is demonstrated to be well suited for the study of such an asymmetric combustion system. Spatial mapping and tracking of flame position is applied to both engine operating modes; normal diesel operation and dual-fuel operation with diesel pilot ignition of the gas. Similarities and differences between diesel and gas flame shape and development can thus be visualised directly. The effects of changing charge density, gas injection pressure and injection nozzle geometry on the flame geometry and development are also studied.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • MAN Energy Solutions
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Energiteknik
Originalspråkengelska
Titel på värdpublikationWCX SAE World Congress Experience
FörlagSociety of Automotive Engineers
Volym2020-April
StatusPublished - 2020 apr 14
PublikationskategoriForskning
Peer review utfördJa
EvenemangSAE 2020 World Congress Experience, WCX 2020 - Detroit, USA
Varaktighet: 2020 apr 212020 apr 23

Publikationsserier

NamnSAE Technical Papers
FörlagSociety of Automotive Engineers
ISSN (tryckt)0148-7191

Konferens

KonferensSAE 2020 World Congress Experience, WCX 2020
LandUSA
OrtDetroit
Period2020/04/212020/04/23