Orbital Topology Controlling Charge Injection in Quantum-Dot-Sensitized Solar Cells

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Quantum-dot-sensitized solar cells are emerging as a promising development of dye-sensitized solar cells, where photostable semiconductor quantum dots replace molecular dyes. Upon photoexcitation of a quantum dot, an electron is transferred to a high-band-gap metal oxide. Swift electron transfer is crucial to ensure a high overall efficiency of the solar cell. Using femtosecond time-resolved spectroscopy, we find the rate of electron transfer to be surprisingly sensitive to the chemical structure of the linker molecules that attach the quantum dots to the metal oxide. A rectangular barrier model is unable to capture the observed variation. Applying bridge-mediated electron-transfer theory, we find that the electron-transfer rates depend on the topology of the frontier orbital of the molecular linker. This promises the capability of fine tuning the electron-transfer rates by rational design of the linker molecules.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Teoretisk kemi
  • Atom- och molekylfysik och optik
Originalspråkengelska
Sidor (från-till)1157-1162
TidskriftThe Journal of Physical Chemistry Letters
Volym5
Utgåva nummer7
StatusPublished - 2014
PublikationskategoriForskning
Peer review utfördJa