Quantitative study of roughness effect in nanoindentation on AISI316L based on simulation and experiment

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

In nanoindentation, roughness of the sample surface can be a severe source of error in the determination of properties from indentation tests. Recently, roughness was also considered as a crucial issue in understanding the indentation size effect where a significant increase in hardness was seen with the decrease of depth. A three-dimensional roughness model with the Johnson–Cook material model is employed to study the roughness effect in nanoindentation on AISI316L stainless steel by use of finite element method. The rough surface is obtained by generating a random function in Matlab and then applying fast Fourier transform. With the quantitative analysis the mechanical properties such as the hardening and variation of the reduced modulus are found. From both the experimental and simulation results, the hardness distribution shows strengthening effect with the increased surface roughness. Both the scatter of hardness and indentation modulus increases with the increased roughness. In addition, the dependence of the pile-up effect and the contact area on the roughness is studied and analyzed.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Teknisk mekanik

Nyckelord

  • Nanoindentation, roughness, 3D FEM simulation, hardness
Originalspråkengelska
Sidor (från-till)4067-4075
Antal sidor13
TidskriftProceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science
Volym231
Utgåva nummer21
Tidigt onlinedatum2016 jun 8
StatusPublished - 2017
PublikationskategoriForskning
Peer review utfördJa