Recombinant alpha-1-microglobulin is a potential kidney protector in 177Lu-octreotate treatment of neuroendocrine tumors

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Treatment of neuroendocrine tumors with 177Lu-octreotate results in prolonged survival and improved quality of life for the patient. However, the treatment is today limited by side effects on kidney and bone marrow, and complete tumor remission is rarely seen. A possible way to minimize dose-limiting toxicity and to optimize this treatment method is to use radioprotectors in conjunction with radiotherapy. A recombinant form of α1-microglobulin (rA1M) was recently shown to preserve kidney structure and function after 177Lu-octreotate injection in mice and was suggested as a radioprotector in peptide receptor radionuclide therapy. The aims of this work were to investigate the influence of rA1M on the in vivo biokinetics of 177Lu-octreotate, with a focus on tumor tissue, and to study the impact of rA1M on the therapeutic response in tumor tissue subjected to 177Lu-octreotate treatment. Methods: The biodistribution of 177Lu-octreotate was examined in BALB/c nude mice with GOT2 tumors 1-168 h after injection with either 177Lu-octreotate or coadministration of 177Lu-octreotate and rA1M. The effects of rA1M on the tumor response after 177Lu-octreotate treatment were studied in BALB/c nude mice with GOT1 tumors. Three groups of mice were administered rA1M, 177Lu-octreotate, or both. Another group served as untreated controls. Tumor volume was measured to follow the treatment effects. Results: No statistically significant difference in biodistribution of 177Lu was observed between the groups receiving 177Lu-octreotate or coinjection of 177Lu-octreotate and rA1M. The therapy study showed a decrease in mean tumor volume during the first 2 wk for both the 177Lu-octreotate group and the coadministration group, followed by tumor regrowth. No statistically significant difference between the groups was found. Conclusion: rA1M did not negatively impact absorbed dose to tumor or therapeutic response in combination with 177Lu-octreotate and may be a promising kidney protector during 177Lu-octreotate treatment of patients with neuroendocrine tumors.

Detaljer

Författare
Enheter & grupper
Externa organisationer
  • Göteborgs universitet
  • Stanford University School of Medicine
  • A1M Pharma AB
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Cancer och onkologi
Originalspråkengelska
Sidor (från-till)1600-1604
TidskriftJournal of Nuclear Medicine
Volym60
Utgåva nummer11
StatusPublished - 2019 mar 29
PublikationskategoriForskning
Peer review utfördJa