Rho-Kinase Signaling Regulates Pulmonary Infiltration of Neutrophils in Abdominal Sepsis via Attenuation of CXC Chemokine Formation and Mac-1 Expression on Neutrophils.

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Standard

Harvard

APA

CBE

MLA

Vancouver

Author

RIS

TY - JOUR

T1 - Rho-Kinase Signaling Regulates Pulmonary Infiltration of Neutrophils in Abdominal Sepsis via Attenuation of CXC Chemokine Formation and Mac-1 Expression on Neutrophils.

AU - Hasan, Zirak

AU - Palani, Karzan

AU - Rahman, Milladur

AU - Zhang, Su

AU - Syk, Ingvar

AU - Jeppsson, Bengt

AU - Thorlacius, Henrik

PY - 2012

Y1 - 2012

N2 - ABSTRACT: Excessive neutrophil infiltration is a major component in septic lung injury, although the signaling mechanisms behind pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. Herein, we hypothesized that Rho-kinase activity may play a significant role in pulmonary neutrophil recruitment and tissue damage in abdominal sepsis. Male C57BL/6 mice were treated with the Rho-kinase inhibitor Y-27632 (0.5 or 5 mg/kg) before cecal ligation and puncture. Bronchoalveolar lavage fluid and lung tissue were harvested for analysis of neutrophil infiltration, as well as edema and CXC chemokine formation. Blood was collected for analysis of Mac-1 on neutrophils and CD40L on platelets as well as soluble CD40L and metalloproteinase-9 (MMP-9) in plasma. CLP triggered significant pulmonary damage characterized by neutrophil infiltration, increased levels of CXC chemokines, and edema formation in the lung. Furthermore, CLP up-regulated Mac-1 expression on neutrophils, decreased CD40L on platelets and increased soluble CD40L and MMP-9 in the circulation. Interestingly, inhibition of Rho-kinase dose-dependently decreased CLP-induced neutrophil expression of Mac-1, formation of CXC chemokines and edema as well as neutrophil infiltration and tissue damage in the lung. Moreover, Rho-kinase inhibition significantly reduced sepsis-provoked gene-expression of CXC chemokines in alveolar macrophages. In contrast, Rho-kinase inhibition had no effect on platelet shedding of CD40L or plasma levels of MMP-9 in septic mice. In conclusion, these data demonstrate that the Rho-kinase signaling pathway plays a key role in regulating pulmonary infiltration of neutrophils and tissue injury via regulation of CXC chemokine production in the lung and Mac-1 expression on neutrophils in abdominal sepsis.

AB - ABSTRACT: Excessive neutrophil infiltration is a major component in septic lung injury, although the signaling mechanisms behind pulmonary recruitment of neutrophils in polymicrobial sepsis remain elusive. Herein, we hypothesized that Rho-kinase activity may play a significant role in pulmonary neutrophil recruitment and tissue damage in abdominal sepsis. Male C57BL/6 mice were treated with the Rho-kinase inhibitor Y-27632 (0.5 or 5 mg/kg) before cecal ligation and puncture. Bronchoalveolar lavage fluid and lung tissue were harvested for analysis of neutrophil infiltration, as well as edema and CXC chemokine formation. Blood was collected for analysis of Mac-1 on neutrophils and CD40L on platelets as well as soluble CD40L and metalloproteinase-9 (MMP-9) in plasma. CLP triggered significant pulmonary damage characterized by neutrophil infiltration, increased levels of CXC chemokines, and edema formation in the lung. Furthermore, CLP up-regulated Mac-1 expression on neutrophils, decreased CD40L on platelets and increased soluble CD40L and MMP-9 in the circulation. Interestingly, inhibition of Rho-kinase dose-dependently decreased CLP-induced neutrophil expression of Mac-1, formation of CXC chemokines and edema as well as neutrophil infiltration and tissue damage in the lung. Moreover, Rho-kinase inhibition significantly reduced sepsis-provoked gene-expression of CXC chemokines in alveolar macrophages. In contrast, Rho-kinase inhibition had no effect on platelet shedding of CD40L or plasma levels of MMP-9 in septic mice. In conclusion, these data demonstrate that the Rho-kinase signaling pathway plays a key role in regulating pulmonary infiltration of neutrophils and tissue injury via regulation of CXC chemokine production in the lung and Mac-1 expression on neutrophils in abdominal sepsis.

U2 - 10.1097/SHK.0b013e3182426be4

DO - 10.1097/SHK.0b013e3182426be4

M3 - Article

C2 - 22266975

VL - 37

SP - 282

EP - 288

JO - Shock

JF - Shock

SN - 1540-0514

IS - 3

ER -