Saturated pool boiling heat transfer of acetone and HFE-7200 on modified surfaces by electrophoretic and electrochemical deposition

Forskningsoutput: TidskriftsbidragArtikel i vetenskaplig tidskrift

Abstract

Boiling heat transfer intensification is of big relevance to energy conversion and conservation, materials and resources saving, and electronics cooling. This work aims to enhance saturated pool boiling of well-wetting liquids, i.e., acetone and HFE-7200 on nanoparticles-deposited surfaces by electrophoretic deposition and on microporous foam surfaces by electrochemical deposition. The electrophoretic-deposited surfaces enhance the heat transfer coefficient of acetone and HFE-7200 by up to 70% and 190%, respectively. However, the critical heat flux is not improved on electrophoretic-deposited surfaces. The electrochemical-deposited surfaces increase the boiling heat transfer coefficient by up to 370% and the critical heat flux by more than 30%. Bubble dynamics were visualized simultaneously. The bubble departure diameter from experiments can be predicted by a dynamic force balance model within a ±20% error band. A mechanistic heat transfer model was proposed for modified porous surfaces, including not only the heat fluxes from microlayer evaporation and transient conduction but also the heat flux from micro-convection due to liquid agitation and entrainment by growing and departing bubbles. The mechanistic heat transfer model can predict experimental pool boiling curves of acetone and HFE-7200 on electrophoretic-deposited and electrochemical-deposited surfaces relatively well, especially for the isolated bubble regime where most bubbles are isolated and bubble coalescence is not intensive. Besides, the critical heat flux of a modified surface can be estimated if the initial (maximum) wicked volume flux on the structured surface relative to the smooth surface is considered.

Detaljer

Författare
Enheter & grupper
Forskningsområden

Ämnesklassifikation (UKÄ) – OBLIGATORISK

  • Energiteknik

Nyckelord

Originalspråkengelska
Sidor (från-till)286-299
Antal sidor14
TidskriftApplied Energy
Volym249
StatusPublished - 2019
PublikationskategoriForskning
Peer review utfördJa